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An expression is developed for the variat ion of the critical solution temperature  of a bi- 
nary liquid system when a third component  (dopant)  is added, using an extension of the 
regular  solution theory. The model can be used for UCST, LCST and for closed loop systems 
and has the correct features  in the limiting eases. 

Introduction 

It is well known in thermal studies of partially miscible solutions that 
critical solution temperatures are sensitive to the presence of impurities in 
the system. In the case of binary liquid systems, an impurity which dissolves 
in both the liquids generally lower's the UCST while an impurity which is 
soluble in one of the liquids raises the UCST [1-4]. A general theoretical 
framework which provides qualitative, and in some cases semi-quantitative, 
description of the phenomena is the regular solution theory [5-7]. Several 
authors have studied the impurity effect as a quasi-binary or as a ternary sys- 
tem phenomenon [3, 8, 9]. The theoretical expressions turn out to be some- 
what complicated, involving many parameters and have therefore not been 
widely used. In recent years, experimental studies have extended the 
phenomena in many directions [10]. Impurity effects in LCST systems have 
been studied; closed loop phase diagrams which shrink as a result of doping 
have also been studied. These extensions add to the complications which 
have to be handled by the theory which must nevertheless be amenable to 
simple interpretations and applications. 
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Recently Raz and Wisniak [11] have suggested a version of the simple 
regular solution theory which has some interesting features. In the simple 
model, the excess molar Gibbs energy of G is written for binary system as 

gE = An ( 1 - n ) (1) 

in terms of the mole fraction of one of the compounds. Phase separation oc- 
curs when 

A / R T  > 2 (2) 

Thus the (upper) critical solution temperatures is determined in terms of 
theA - constant as 

To = A / 2 R  (3) 

and at lower temperatures the two phase separate out. Earlier authors had 
pointed out that a temperature dependent A can explain LCST and closed 
loop phenomena, but the logarithmic dependences introduced in analogy 
with other situations have greatly added to the complexity of the expres- 
sions. Raz and Wisniak showed that instead of a constant value of A, a qua- 
dratic form 

A ( T )  = a  + b T +  C7 e (4) 

is able to explain a variety of phenomena, including the presence of UCST, 
LCST and closed loop phase diagrams. The extension of the regular solution 
theory does not appear to be widely known and utilized. 

Model Theory 

The calculation of the effect of an impurity on the critical temperature 
can be conveniently performed in the frame work of the regular solution 
theory [5-7]. In a three component system, one writes 

gE = A12/lln2 + A13nlrl3 + A23nit13. (s) 

In the strictly regular solution theory of binary systems 

(n l )c  = (n2)c = 0.5 and Tc =Alz/2R.  (6) 
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Following Raz and Wisniak [11] one takes the A's to be quadratic in 
temperatures in Eq. (4). In view of the many approximations in the model 
one retains only the first temperature derivative of A in the calculations. 
Further one assumes the third component mole fraction n3 to be small. The 
coexistence curve is described by the boundary P, which separate the stable 
and unstable phases and in terms of its variation with n3 and T one can write, 

01" 
OTc On3 
an3 - OP (7) 

aT 

for the change of Tc with n3. For a three component system, in the regular 
solution theory the change of P with na is obtained as [5-7], 

On--~ = - - ~ "  ( 8 )  

Extra terms arise in the derivative of the temperature because of the ad- 
ditional terms in Eq. (4). One starts with the expression for the chemical 
potential, 

,ui =Iz ~ ( T, P )  + R T l n ( n i )  + RTln( r , ) ,  

where the last term arises from the non-ideality of the system, 

(9) 

Og~ [ P = R T l n ( y  O. (10) 
ani T, 

�9 .0/~3 0/~20~u2 + n3" 0/~3 (11) 
On, On3 On1 On2 

The phase boundary P is given by 

O/~,. 0/~1 + n2" 
P = n,.  0112 On3 

Using the above values of/~i one gets, 

o/u, ! .  I "  

2n~112 2n~A,3 = l -  R r  + 2 n ~ a , 2  - - 
On2 n k 

+ ( A 1 2 - A 2 3 + A 1 3 ) ' n 3 - 2 ( A l z - A z 3 + A l a ) ' n z I " t 3  1 

om= ! .  [ _ R T  + Z,,~a,3 - 2n~ ,3  - 2n~12 
On3 n 
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+ ( A 1 3 - A 2 3 + A 1 2 ) ' n 2 - 2 ( A 1 3 - A 2 3 + A l z ) ' n ~ 2  ] 

am = ! .  [ _ R T  + Z.~23 - Z.~23 - 2n~21 
On3 n 

+ ( A 2 3 - A 1 3 + A l z ) ' n l - 2 ( A 2 3 - A 1 3 + A l z ) ' n l n 3 ]  

For a dilute impurity near the critical point of a binary system, n3 ~ 0, 
( n l ) c  = ( n 2 ) c  = 0.5. 

Thus the above equation gets simplified as, 

( 0/.~2 : c  O~u, .~ =0; \~n3/C( 0~/.~1"~ =_!.[Alz_m13_l_mz3].2n 

( an3 )c  = O/t..___&z - 1 - - - ' [ A l z - A ' + A 1 3 ] "  21l (12) 

In a similar way one considers the temperature derivative (a /aT)  (Olui/an i ) 
and inserts the critical conditions (12) so that one has 

( O  0/~___! 1 1 0,'t12] ) 
1 1 0A13 0Az3 

r ~ l  = ! .  1 cIA23 ~13 
(~T) LOn3] c n [ - R + ~ ' (  aT OT ) ] "  (13) 

When these are substituted in (OP/aT) from Eq. (11) one obtains, 

OPi 1 A12.( R 1 OA12 
- ~ ) C - n  z 2 2 aT )" (14) 

Combining equations (7), (8) and (14), one arrives finally, 

OTc _ A~2 - (A13 - A23 )2 (15) 
1 0An 

On3 2A12"(R 2 OT I 

This equation gives the shift of Tc by the doping with the impurity n3. 
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Cases of phase separation depending on the variations of A/RT arround the critical 
value 2.0. (a) A/RT decreases with increase of T, the situation when the parameter A is 
nearly constant. At low temperatures when A/RT > 2, two phase separation occurs with 
a single phase above UCST. The UCST phenomenon is thus the most common critical 
solution temperature in partially soluble mixtures. (b) A/RT increases with increase of T. 
Above LCST two phases separate out with the one phase region at low temperatures. 
(c) A/RT is parabolic convex upwards. This corresponds to a closed loop phase diagram 
with one phase region at high and low temperatures; two phases coexist at intermediate 
temperatures. (d) A/RT is parabolic convex downwards. A valley-saddle phase boundary 
occurs with a one phase region at intermediate temperatures; two phases coexist at high 
and low temperatures 
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Discussion 

In the simple regular solution theory, the parameter A is taken as con- 
stant. If the system remains in a liquid state at sufficiently low temperatures, 
one can have the condition A / R T > 2  and phase separation occurs at low 
temperatures. This is the common UCST phenomenon [Fig. la]. If one has a 
temperature dependent A parameter, then A / R T  can have other possible 
variations which yield LCST [Fig. lb], closed loop phase diagrams [Fig. lc] 
and valley-saddle type mutual solubility phase diagrams [Fig. ld]. The qua- 
dratic dependence is the minimum requirement to ensure a description of 
all the cases with the same functional form of A. 

The Eq. (15) is equivalent in spirit to the considerations of several 
workers [4, 12-15]. If A13 -- Az3 i.e. impurity interacts equally with liquids 
(1) and (2) and so dissolves in both phases, then ~Tc/~n3 is negative and 
UCST moves down. An example [2] is the addition of acetic anhydrate to the 
binary critical mixture of acetonitrile + cyelohexane. If A23 >>A12 and 
A23 >>A13, i.e. impurity (3) interaction with liquid (2) is much more than 3-1 
and 2-1 interactions and the impurity dissolves only in (3); then UCST 
moves up with the addition of impurity n3. An example is the doping of 
acetonitrile + eyclohexane with water [2]. The semi-quantitative application 
of these ideas to specific systems requires information on the value of A and 
their temperature variations, which are not always readily available. These 
will be considered separately. 

Finally it is to be noted that if the A~'s are independent of T, then 
Eq. (15) goes back to the equation of regular solution theory [5-7], namely 

r _ A22- (A,s-A23)  2 (16) 
~n3 2RA12 

As discussed earlier, this describes the qualitative features of UCST 
phenomena only. The temperature derivative of A is needed to describe cor- 
rectly the features of other types of phenomena. It should also be noted that 
in this approximate model the impurity is assumed to affect Tc and not nc. 
While the impurity effects on Tc are substantial to be noticed easily, the ef- 
fect on nc is quite small. 

We thank our colleagues Mr. T. Narayanan and Dr. A. Kumar for their help and support  
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N o m e n c l a t u r e  
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= U p p e r  cri t ical  solut ion t e m p e r a t u r e  

= Lower  crit ical solut ion t e m p e r a t u r e  

= Gibbs  f ree  energy  

= no of  moles  of  a c o m p o n e n t  

= co-eff ic ient  of  the regular  solution theory  

= cri t ical  t e m p e r a t u r e  

= mole  f rac t ion  at cri t ical  t e m p e r a t u r e  

- chemical  po ten t ia l  

= mola r  gas constant  

= Activi ty coeff ic ient  

= Equa t ion  of the surface  

= the value o fp i  under  s t andard  condit ions of  concent ra t ion  

= tota l  num be r  of  moles  
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Zusammenfassung - In Ausdehnung der normalen L6sungstheorie wird eine Gleiehung fiir 
die Anderung der kritischen L6sungstemperatur bei Zusatz einer dritten komponente zu 
einem biniirem fliissigen System entwickelt. Dieses Modell kann aaf UCST, LCST and fiir 
geschlossene Sehlefensysteme angewendet werden und besitzt die riehtigen Charakteristika 
in Grenzf~illen. 
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